Bonjour pourriez vous m'aidez a cette exercice merci On considère, dans un repère orthonormé, les points A(−2 ;−4); B(10 ;2);C (8 ;6)et D(−4 ;0) . 1. Montrer qu
Question
On considère, dans un repère orthonormé, les points A(−2 ;−4); B(10 ;2);C (8 ;6)et D(−4 ;0)
.
1. Montrer que ABCD est un parallélogramme.
2. a) Calculer les longueurs AC et BD.
b) En déduire la nature de ABCD.
3. Calculer les coordonnées du point d’intersection des diagonales de ABCD.
1 Réponse
-
1. Réponse Micka44
Bonjour :))
On considère, dans un repère orthonormé, les points A(-2; -4), B(10; 2), C(8; 6) et D(-4; 0).
1. Montrons que [AB] \\ et = [CD] :
[tex]\overrightarrow{AB} = (10-(-2); 2-(-4)) \ donc \ \overrightarrow{AB} = (12; 6)\\\\\overrightarrow{CD} = (-4-8; 0-6) \ donc \ \overrihgtarrow{CD} = (-12; -6)\\\\Calculons \ le \ d\'eterminant \ pour \ prouver \ la \ colin\'earit\'e :\\12*(-6)-(-12)*6=-72-(-72)=-72+72=0\\\\\overrightarrow{AB} \ et \ \overrightarrow{CD}\ sont \ colin\'eaires. \ Par \ cons\'equent, ils \ sont \ parall\`eles.\\\\V\'erifions \ leur \ longueur :[AB] = \sqrt{12^{2}+6^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}\\\\[/tex]
[tex][CD] = \sqrt{(-12)^{2}+(-6)^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}[/tex]
CONCLUSION : ABCD est un parallélogramme.
2. a)Longueurs AC et BD
[tex]\overrightarrow{AC} = (8-(-2); 6-(-4))=(10;10)\\\overrightarrow{BD} = (-4-10; 0-2) = (-14; -2)\\\\Longueurs \ de \ [AC] \ et \ [BD] :\\\\[AC] = \sqrt{10^{2}+10^{2}} = \sqrt{200} = \sqrt{2*4*25} = 10\sqrt{2}\\\\[BD] = \sqrt{(-14)^{2}+(-2)^{2}} = \sqrt{196+4}=\sqrt{200}=10\sqrt{2}\\\\Les \ longueurs [AC] \ et [BD] \ sont \ les \ m\^emes.[/tex]
b.) Nature de ABCD
On en déduit que ABCD est un parallélogramme rectangle.
3). Coordonnées du point d'intersection des diagonales
[tex]Les \ diagonales \ sont \ [AC] \ et \ [BD].\\\\Point \ milieu \ de \ [AC] : (\frac{-2+8}{2} ; \frac{-4+6}{2}) = (3; 1)\\Point \ milieu \ de \ [BD] : (\frac{10+(-4)}{2} ; \frac{2+0}{2}) = (3; 1)[/tex]
Je te souhaite une bonne continuation :))
Bonne soirée ;)
Autres questions