Mathématiques

Question

Bonjour, pouvez-vous m'aider pour cet exercice ?
On considère la figure ci-contre, réalisée à main levée et qui
n'est pas à l'échelle.
On donne les informations suivantes :
— les droites (ER) et (FT) sont sécantes en A;
- AE = 8 cm, AF= 10 cm, EF = 6 cm;
- AR = 12 cm, AT = 14cm
1. Démontrer que le triangle AEF est rectangle en E.
2. En déduire une mesure de l'angle EAF au degré près.
3. Les droites (EF) et (RT) sont-elles parallèles?

1 Réponse

  • Réponse :

    1. 10² = 8² + 6²

    L'égalité est vérifié.

    Le triangle EAF est donc rectangle en E.

    2. Arccos(6/10)

    A= 53.13

    L'angle EAF est environ égal à 53°

    3. Les deux droites sont parallèles car selon la propriété :

    Si deux droites sont perpendiculaires à une même droite,

    Alors ces deux droites sont parallèles.

    Explications étape par étape :

    1. D'après la réciproque du théorème de Pythagore, on peut emmètre :  

    AF² = EA² + EF²

    10² = 8² + 6²

    100 = 64 + 36

    100 = 100

    L'égalité est vérifié.

    Le triangle EAF est donc rectangle en E.

    2. Cos(A)= AE/AF

    Cos(A)= 6/10

    Arccos(6/10)

    A= 53.13

    L'angle EAF est environ égal à 53°

Autres questions